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1. Abstract 

Current commercial cultivars of wheat have been selected according to grain yield and quality, not 

straw yield or suitability for bioethanol production. There is a lack of data on the relative straw yield 

of different cultivars of wheat and whether there is variation in digestibility of straw for bioethanol 

production. It is not known whether the digestibility of wheat straw varies with cultivars, or if this is 

linked to lodging susceptibility (straw strength). Hence, the relationship between straw digestibility 

for bioethanol production and lodging resistance (straw strength) was investigated to identify traits 

with these important parameters with the effect of ‘with’ and ‘without’ plant growth regulators 

(PGRs) and to determine which could be used to select for more efficient bioethanol production. 

There were no significant differences between cultivars in total biomass production at harvest. 

However, there were differences in grain yield, straw yield, harvest index, straw glucose yield and 

straw digestibility. PGR application had no significant effect on total biomass or grain and straw 

yield; neither did PGRs affect straw glucose yield or straw digestibility but as expected, PGR 

application significantly reduced cultivar height. There was a negative relationship between cultivar 

height and straw digestibility which is hypothesised to be due to the greater stem:leaf ratio of taller 

cultivars. There was no relationship between straw digestibility vs. stem material strength and stem 

failure wind speed. Although straw digestibility had no relationship with stem failure wind speed, 

the actual glucose recovered and available for bioethanol production was positively related to stem 

failure wind speed which is a good indicator for growing dual purpose wheat crop (food and fuel). 

Moreover, potential bioethanol yield varied between cultivars in both years. 
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2. Introduction 

Production of first generation liquid biofuels from starchy grains (such as wheat and maize) has 

been controversial due to the potential competition for land for growing food vs. fuel (IEA, 2009; 

FAO, 2010 and Erdei et al., 2010). Liquid biofuel production could displace food production in the 

use of land and could also affect the use of natural and agricultural resources (FAO, 2010). Many 

of the crops currently used as biofuel feedstock require high quality agricultural land and significant 

inputs of fertilisers, pesticides and water (UN, 2007; Demirbas et al., 2008). This has led to interest 

in second generation biofuels produced from lignocellulosic materials (e.g. Miscanthus, cereal 

straw, and other agricultural by-products) because of its low cost, availability and cellulosic content 

(Gnansounou et al., 2010; Sims et al., 2010). The second generation biofuel feedstock are rich in 

cellulose, but that cellulose is very well protected by hemicellulose and lignin and is not easily 

available for enzymatic digestion (Saha et al., 2005; Kumar and Stroeve, 2009).  

 

In the UK, approximately 12.2 million tonnes of straw was produced from cereals and oilseeds in 

2011 (Stoddart and Watts, AHDB 2012). Average harvestable straw yields for wheat, barley and 

oilseed rape in the UK are estimated to be 2.53 t ha-1, 2.26 t ha-1 and 1.65 t ha-1, respectively 

(Wilson et al., 2013). Wheat straw makes up 54% of this value and approximately 50% of wheat 

straw is chopped and incorporated into the soil, rather than being used for animal feed/bedding. 

Hence, there could be up to 3 million tonnes of wheat straw per annum available for bioenergy 

production in the UK alone. However, it is important to recognise that, when incorporated into the 

soil, straw has a nutrient value and also contributes to organic matter content and therefore soil 

quality (Punter and Woods, 2004; IEEP, 2012). Copeland and Turley (2008) estimated that the 

nutrient value of wheat straw was £17 per tonne of straw removed, which would rise with 

increasing fertiliser costs. The long term impacts of removing straw each year on soil quality have 

yet to be quantified.  

 

Current commercial cultivars of wheat have been selected according to grain yield and quality, not 

straw yield or suitability for bioethanol production. There is a lack of data on the relative straw yield 
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of different cultivars of wheat and whether there is variation in digestibility of straw for bioethanol 

production and whether more digestible straw weaker, and therefore more prone to lodging?   

 

The use of wheat straw for second generation bioethanol production will depend on a number of 

issues like straw availability, straw quality (lodging) and the economic feasibility of straw 

digestibility. The recalcitrant nature of lignocellulose is still the bottleneck of modern conversion 

processes (Himmel et al., 2007). Numerous factors contribute to the recalcitrance of wheat straw 

during pre-treatment and enzymatic saccharification. One of these factors is the histological 

variation between different plant tissues and organs. The wheat straw epidermis is thin, but has 

dense and thick-walled cells with an outer wall coated with a waxy film of cutin-cuticle. The 

vascular system has xylem tissue with dense lignified structures in the secondary wall, surrounded 

by a strong sheath of sclerenchyma cells, which have elongated thick lignified cell walls resistant to 

microbial degradation (Hansen et al., 2011). 

 

Digestibility is not only an important characteristic of cereal straw for second generation biofuel 

production but also for animal feed. Early studies considering the digestibility of wheat straw were 

conducted for its use as an animal feed (Capper, 1989; Tolera et al., 2008). Studies revealed 

differences in straw digestibility between bread wheat cultivars (Knapp et al., 1983; Kernan et al., 

1984; Habib et al., 1995). Habib et al. (1995) found a highly significant difference in straw 

digestibility of cultivars, with in vitro dry matter digestibility (IVDMD) ranging from 36.40% to 

48.36%. Wagner Jensen et al. (2011) found significant differences in straw digestibility of 109 

currently grown high yielding wheat cultivars. The cultivars exhibited much variation in straw 

degradability ranging from 258 g kg-1 to 407 g kg-1 of dry matter. 

 

A large number of characteristics determine digestibility of lignocellulosic material, such as lignin 

content and cellulose crystallinity (Chang & Holtzapple, 2000). Different varieties vary in the 

proportion of their masses made up by the different components, e.g. the amount of stem and 

leaves, and these differ in their structure and composition and thus have different digestibility and 

this means there are differences in overall digestibility (Capper, 1988). Forages and crop residues 
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consist of a heterogeneous population of cell types each of which have degradation characteristics 

determined by their location within the plant, by their anatomical features and by the chemical 

composition of their walls (Travis et al., 1996). Detailed investigation of the relationship between 

the anatomy and digestibility of forages has demonstrated interactions between cell wall thickness, 

lignification and other anatomical features in determining the digestibility of different cell types 

(Minson & Wilson 1994; Travis et al., 1996). 

 

Studies conducted by Kernan et al. (1984) observed that differences in the in vitro digestibility of 

organic matter in the leaf and stem fractions of wheat straw contributed more to overall digestibility 

than the actual proportions of leaf to stem in the straw. Ramanzin et al. (1986) observed the same 

relationship for dry matter degradability of barley straw. Leaves had the highest digestibility 

followed by chaff, nodes and internodes. However, Capper et al. (1989) argued that with a larger 

range of values, the stem to leaf ratio becomes a major contributor to variation in overall 

digestibility. Plant height was positively related to the content of cell wall components (Capper et 

al., 1989; Mathison et al., 1999) and negatively related to microbial degradation in the rumen 

(Colucci et al., 1992; Mathison et al., 1999). Degradation is closely related to the distribution of cell 

types (parenchyma, epidermis, and sclerenchyma cells) within leaf and stem, and the thickness of 

the walls of specific cell types (Goto et al., 1991). Recent studies conducted on wheat straw by 

Zhang et al. (2013) found that straw leaf and stem fractions differed in their compositional profiles 

and were found to behave differently under enzymatic digestion or saccharification. Pure leaf was 

hydrolysed significantly better than pure stem. In mixtures, higher leaf:stem ratios always gave a 

better sugar conversion rate after enzyme digestion or saccharification. Increased straw stiffness 

may be associated with modified anatomical features of the stems and changed chemical 

characteristics of the cell walls, which may be expected to decrease degradability of the straw 

(Travis et al., 1996).  

 

Lodging is the permanent displacement of stems from the vertical and affects all cereal species. 

Lodging in plants is either due to failure of the stem (Neenan and Spencer-Smith, 1975; Thomas, 

1982) or the root system (Crook and Ennos, 1993; Easson et al., 1993). Lodging is affected by 
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many factors including wind, rainfall, soil, and attributes of the plant as affected by variety, sowing 

date, seed rate, nitrogen supply, PGRs etc. The effect of these factors on lodging has been very 

difficult to quantify because of the complexity of the lodging process (Berry and Cameron, 2002). 

 

The process of lodging in wheat in particular has been characterised and well modelled along with 

the plant characters involved in lodging resistance (Baker, Berry and Spink et al., 1998). The 

principal factors that are important in lodging in wheat are the leverage related parameters and the 

stem strength characters. Stem leverage force is determined by parameters such as height at the 

centre of gravity, ear area, and; natural frequency and shoot number. Stem strength characters 

includes stem diameter, wall width and material strength of the stem, and the root plate spread and 

depth.  

 

The lodging model by Berry et al. (2003) further develops an existing lodging model by Baker et al. 

(1998) to predict the wind speed at which lodging will occur. The lodging model is based on more 

important parameters such as stem diameter, plant height and soil type. By using accurate values 

of drag coefficient and damping ratio, the model has been made more precise, making it easier to 

compare cultivar resistances and for farmers to select the most suitable cultivar with the lowest 

lodging risk. 

 

This paper considers biomass production, partitioning to grain and straw, and lodging susceptibility 

of 15 UK winter wheat cultivars (introduced between 1968 and 2010). Lodging susceptibility and 

straw strength are assessed using a calibrated model of wheat lodging, as described by Berry et 

al. (2003). The relationship between straw digestibility for bioethanol production and straw 

strength/lodging resistance is examined.  
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3. Materials and methods 

3.1. Management of the field experiment 

Two field experiments were carried out during 2009/10 and 2010/11 at the University of 

Nottingham, Sutton Bonington Campus near Loughborough, UK. On 20 October 2009, winter 

wheat was sown at 250 seeds m-2, using a Wintersteiger plot drill on a stony sandy loam soil 

(Dunington Heath series). The previous crop was winter oats. The experiment was a randomised 

block design with 14 cultivars of bread wheat grown in four replicate blocks. The plot size was 24 x 

1.6 m with two plots per cultivar in each block (one for crop measurements and one for retaining 

large quantities of straw for further analysis).  

 

On 13 October 2010, winter wheat was sown at 250 seeds m-2, using a Wintersteiger plot drill, on a 

stony sandy loam soil (Dunington Heath series). The previous crop was, once again, winter oats. 

The same 14 cultivars were grown as in the previous experiment with the addition of Glasgow, a 

high biomass cultivar, all grown with or without plant growth regulators (PGRs). The experiment 

was arranged as a split plot with PGR on the main plot and cultivar on the sub plots. The plot size 

was 24 x 1.6 m with four replicate blocks.  

 

Crop protection chemicals were used prophylactically to minimise weeds, pests and diseases in 

both years. And soil fertility levels were amended to ensure nutrient availability would not be 

limiting. The 15 UK winter wheat cultivars were selected to provide a wide range of material in 

terms of date of introduction, height, lodging resistance and nabim quality group (Table 1).  

 

 

 

 

 

 

 

 



9 

Table 1: Details of 15 winter wheat cultivars in the experiment with its selection criteria. 
 
Cultivars nabim 

Group 
Resistance

to lodging
without PGR

Resistance 
to lodging 
with PGR

Height 
without 

PGR (cm)

Height 
with 

PGR (cm) 

Year 
first 

listed
Hereward 1 8 9 88 - 1991
Xi 19 1 4 6 97 88 2002
Mascot 1 6 8 93 84 2006
Cordiale 2 8 9 82 76 2004
Battalion 2 7 8 88 82 2007
Sterling 2 6.7 8.3 80 - 2010
Riband 3 8 8 89 - 1989
Zebedee 3 6 6 87 84 2007
Invicta 3 7.2 7.5 93 86 2010
Istabraq 4 6 7 96 88 2004
Ambrosia 4 7 8 88 80 2005
Grafton 4 9 9 79 72 2009
Quartz 4 9 9 75 - 2009
Glasgow 
Maris Widgeon* 

4 
- 

6
-

8
-

85
-

74 
- 

2005
1968

Source: AHDB Recommended Lists for cereals and oilseeds 2009, 2010 and 2011 

* limited information available on Maris Widgeon due to date of introduction 
 
 

3.2. Lodging assessments 

A full set of lodging associated measurements in 2009/10 and 2010/11 was taken so that the 

results could be put into the lodging model by Berry et al. (2003). The model allows the strength of 

the stem and root system to be calculated, along with the failure wind speed of each. 

 

Ten plants were carefully removed from each plot on 1 July, 2010 and 6 July, 2011 when the 

plants were at Zadoks GS 75. The plants were placed in polythene bags and stored at 4°C until 

laboratory analysis was complete.  

 

In the laboratory, the main shoot was isolated and the principal plant characters involved in stem 

lodging, as identified by Berry et al. (2000) were measured, including natural frequency, number of 

ears per plant, ear area, height at centre of gravity and length, diameter, wall width and breaking 

strength of the bottom two internodes (internodes 1 and 2). The detailed methodology for these 

measurements is described by Berry et al. (2000). Calculation of stem failure wind speed, stem 

material strength and stem leverage were done using calculations described in Berry et al. (2000). 
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3.2.1. Stem Leverage Characters 

The height at the centre of gravity and main stem ear area, along with the natural frequency, are 

used to calculate stem leverage (Equation 3.1). The centre of gravity was determined by balancing 

the main stem on an extended finger, so that the point of balance could be determined. The height 

at the centre of gravity was recorded as the distance from the base of the stem to the balance 

point. Natural frequency was measured on the main stem, which was clamped at the base. The top 

of the shoot was displaced to a distance of approximately 10 cm from the vertical and then 

released, and time taken for three oscillations was recorded. Natural frequency (n) is then 

calculated as the number of oscillations per second. Ear area was measured using LI-COR leaf 

area meter. Stem leverage (B) is expressed by Equation 3.1.  

Equation 3.1: Leverage on internode one (after Baker et al., 1998) 

                     

Where: 

ρ  =  density of air (1.2 kg m-3) 

A  =  main stem ear area (m2) 

CD = drag coefficient (taken as 1) 

Vg = wind gust speed (taken as 13 m s-1)  

X  =  height at the centre of gravity (m) 

g  =  acceleration due to gravity (9.81 m s-2) 

n  = natural frequency (Hz)   

δ  =  damping ratio (taken as 0.08) 

 

Leverage on internode two (B2) was also calculated. This is defined by Equation 3.2.  

Equation 3.2: Leverage on internode two (after Baker et al., 1998) 

 

Where: 

B   =  leverage on internode one  

X   =  height at the centre of gravity (m) 

h1  =  internode one length (m) 
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The stem failure wind speed (VgS) can be calculated using stem leverage and stem failure moment 

values described in Equation 3.3. 

Equation 3.3: Stem failure wind speed for internode one (after Berry et al., 2000) 

 

 

Where:  

VgS1  =  stem failure wind speed (m s-1)       

BS1    =  internode one failure moment (Nm) 

 

Internode two failure wind speed (VgS2) is calculated using Equation 3.4. 

Equation 3.4: Stem failure wind speed for internode two (after Berry et al., 2000) 

  

Where: 

BS2  =  internode two failure moment (Nm) 

 

3.2.2. Stem Strength Characters 

The strength at the point of buckling of the internode may be described using the term internode 

failure moment, calculated from internode length and breaking strength. Internode material 

strength is calculated from internode failure moment, radius and wall width. 

Internode breaking strength was measured by holding the internode against a Y–shaped brace that 

was clamped to the bench. The two nodes were supported by the metal prongs and a Weighmate 

digital scale (10 kg x 10 g: 1 kg = 9.81 Newtons) was pulled at an even rate to the point of 

internode failure. The force recorded just prior to the buckling of the internode was taken as its 

breaking strength. Internode length was measured from the mid-point of one node to the mid-point 

of the next node. 

Internode failure moment (Equation 3.5) is the term of choice when describing stem strength, as 

this provides an estimate of internode strength that is independent of the length of the internode. 
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Equation 3.5: Internode one failure moment (after Baker et al., 1998) 

 

 

Where: 

BS1  =  internode one failure moment (Nm) 

h1  =  internode one length (m) 

FS1  =  internode one breaking strength (N) 

 

Internode radius and wall width are used with the breaking strength to calculate internode material 

strength. The diameter was measured using digital callipers at the midpoint of each internode then 

divided by two to give the radius. The internode was cut transversely at the centre using a knife 

and the wall width was measured using digital callipers; the internode was then rotated 90° and the 

wall width were measured again. The mean of these two measurements was taken as the 

internode wall width. This method was employed due to high natural variability in this particular 

character. Internode material strength (σ) is calculated using Equation 3.6. 

Equation 3.6: Internode material strength (after Berry et al., 2000) 

 

Where: 

FS  =  internode one breaking strength (N) 

h  =  internode length (m) 

a  =  internode radius (m)   

t  =  internode wall width (m) 

 

3.3. Assessment of biomass production and partitioning 

When the crops were fully mature, a 0.5 x 0.5 m area was randomly sampled from each plot and 

cut at soil level with secateurs. The samples were removed to the laboratory for detailed analysis. 

The total biomass of the sample was determined by drying to constant mass, and then the ears 

were separated from the stems and threshed so that straw, grain and chaff weight could be 
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determined. Harvest index was determined as the proportion of total biomass in the grain and 

straw index as the proportion of total biomass in the straw. 

 

3.4. Laboratory analysis of straw digestibility 

Straw digestibility is expressed as the percentage of total available glucose in the residue released 

during enzyme hydrolysis. Straw digestibility consisted of four steps: milling, pre-treatment, acid 

hydrolysis and enzyme hydrolysis.  

 

3.4.1. Milling  

To obtain homogeneous samples, wheat straw comprising stem and leaf components was knife 

milled with a 1 mm mesh size (P15 mill, Fritsch Gmbh) generating particle sizes of 200–700 

microns.      

 

3.4.2. Pre-treatment of milled straw  

One gram of milled wheat straw from each of the winter wheat cultivars was added to 10 ml of 1% 

H2SO4 (0.1M) and incubated for 20 minutes at 121°C using an autoclave. Samples were then 

brought to pH 4.5–4.8 by the addition of distilled H2O then filtered through Whatman filter paper 

(110 mm Dia). The filtrate was discarded and the retained residue was dried overnight at 40°C in 

an oven. 

 

3.4.3. Acid hydrolysis of pre-treated straw residue 

Thirty milligrams of pre-treated dry wheat straw residue from each of the selected winter wheat 

cultivars were placed in a heat resistant screw cap tube and 1 ml of 12M H2SO4 was added and 

then incubated at 37°C for 1 hour. Samples were then diluted to 1M H2SO4 by the addition of 

11 Eml distilled H2O, and incubated at 100°C for a further 2 hours. After cooling under tap water, 

acid hydrolysed samples were then aliquoted and kept at -80°C until further high performance 

anion exchange chromatography (HPAEC) analysis. 
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3.4.4. Enzyme hydrolysis of pre-treated straw residue 

Two hundred milligrams of cellulase enzyme (EC 3.2.1.4) from Trichoderma reesei  ATCC 26921 

(Sigma-Aldrich) was dissolved in 20 ml of 50 mM NaCitrate buffer (pH 4.8) and dialysed (molecular 

cut off: 12-14000 Daltons) overnight at 4°C with constant stirring in 2 litres of 50 mM NaCitrate 

buffer to remove any traces of sugars and other low molecular weight impurities.  

 

Then, 200 mg of pre-treated dry wheat straw residue was added to 36 ml of the 50mM NaCitrate 

buffer (pH 4.8) in a screw cap falcon tube and 4 ml of the dialysed enzyme solution was added to 

give an enzyme activity equivalent to 40 FPU/g of biomass, at a concentration of 2 FPU/ml. 

Samples were then incubated at 50°C on an orbital shaker at 150 rpm for 72 hours. Aliquots of 

1 ml were taken at time 0 (as soon as the enzyme was added) and then after 2, 4, 6, 24, 48 and 

72 hours of incubation. To stop further enzyme activity, the sample was briefly centrifuged at 

1000 rpm for 30 seconds and the supernatant was quickly frozen at -80°C until further HPAEC 

analysis. 

 

3.4.5. Sugar analysis using High Performance Anion Exchange Chromatography    

            (HPAEC)  

Sugars were determined by high-performance anion exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD) (DIONEX ICS - 3000, UK) using a CarboPac PA20 column 

with a 50 mM NaOH isocratic system and flow rate of 0.5 ml min-1 at 30°C. Glucose, xylose, 

arabinose and galactose were used as standards with mannitol as internal standard.  

 

A standard curve was plotted for each sugar and the trend line equation was used to calculate the 

amount of sugar content and fermentable glucose yield in grams per litre for each straw sample. 

The best fitted line was calculated using Excel software. The linear equation obtained from the 

standard curve was used to find out the concentration of sample glucose in g L-1. Then further the 

value was used to calculate mg of glucose per gram of straw.  

3.5. Statistical analysis  
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Analysis of variance (ANOVA) procedures appropriate for the experimental design and regression 

analyses were carried out using GenStat for Windows, 15th Edition (Lawes Agricultural Trust). All 

data were converted to a per m2 basis prior to statistical analysis.  
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4. Results 

4.1. Biomass production and partitioning 

Total biomass production was assessed in both years. There were no significant differences 

between cultivars in total biomass production in 2010 and 2011 (Tables 2 and 3). However, there 

were significant differences in grain yield in 2010 (P=0.047) and 2011 (P<0.001) with Cordiale 

producing the highest grain yield in 2010, Glasgow producing the highest grain yield in 2011 and 

Maris Widgeon produced the lowest yield in both years (Tables 2 and 3). There were large 

differences between cultivars in straw yield in 2010 (P=0.005) and 2011 (P<0.001) with Maris 

Widgeon, the only non-semi dwarf, produced the most straw in both years (Tables 2 and 3). 

Cultivars differed significantly in the quantity of chaff produced in 2010 (P=0.022; Table 2) and 

2011 (P=0.002; Table 3). PGR application had no significant effect on total biomass, grain yield, 

straw yield or chaff biomass and there were no significant interactions between cultivar and PGR in 

2011.  

 

With the exception of Maris Widgeon, all cultivars had a harvest index above 0.53, the highest 

being 0.57 in 2010 (P<0.001) (Cordiale, Grafton Mascot and Quartz; Table 2) and 0.59 in 2011 

(P<0.001) (Grafton and Riband; Table 3). Considering straw yield as a proportion of total biomass 

(straw index), as expected, Maris Widgeon had the highest straw index (0.48 in 2010 and 0.46 in 

2011) and Cordiale (0.29 in 2010 and 2011) the lowest in both years (Tables 2 and 3) and with 

other cultivars ranging from 0.30-0.33 (P<0.001; Tables 2 and 3). PGR application had no 

significant effect on harvest index and straw index and there were no significant interactions 

between cultivar and PGR in 2011.  
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Table 2: Total biomass production and yield components of 14 winter wheat cultivars in 2010.  
 
Cultivars  

 
Total Biomass  

(g m-2)  
(2010)  

Grain Yield 
(g m-2) 
(2010) 

Straw Yield
(g m-2) 
(2010)

Chaff Biomass  
(g m-2)  
(2010)  

Harvest 
Index 

(2010) 

Straw 
Index 

(2010) 
Ambrosia  1564   877 505 154 0.56 0.32
Battalion  1565   872 511 164 0.55 0.32
Cordiale  1846 1061 553 201 0.57 0.29
Grafton  1378   788 422 152 0.57 0.30
Glasgow  -   - - - - -
Hereward  1540   829 506 176 0.53 0.32
Invicta  1540   816 537 160 0.52 0.35
Istabraq  1492   829 486 152 0.55 0.32
Maris Widgeon  1452   596 709 139 0.41 0.48
Mascot  1492   863 473 152 0.57 0.31
Quartz  1411   813 424 160 0.57 0.30
Riband  1703   964 551 174 0.56 0.32
Sterling  1391   767 441 156 0.54 0.32
Xi 19  1779   987 581 198 0.55 0.32
Zebedee 1407   797 439 149 0.56 0.31
Mean 1540   847 510       163  0.54 0.33
P 
SED 
df                          

0.265 
181.3 

39 

  0.047
  110.5

  39

0.005
63.2

39

0.022 
17.29 

39 

<0.001
0.0155

39

<0.001
0.0130

39
 
 
 
 
Table 3: Total biomass production and yield components of 15 winter wheat cultivars in 2011. 
 
Cultivars  Total Biomass  

(g m-2)  
(2011)  

Grain Yield 
(g m-2) 
(2011) 

Straw Yield
(g m-2) 
(2011)

Chaff Biomass  
(g m-2)  
(2011)  

Harvest 
Index 

(2011) 

Straw 
Index 

(2011) 
Ambrosia  1747 1005 559 177 0.57 0.31
Battalion  1585   893 513 172 0.56 0.32
Cordiale  1503   878 446 172 0.58 0.29
Grafton  1573   929 469 169 0.59 0.29
Glasgow  1788 1048 522 207 0.58 0.29
Hereward  1653   880 556 209 0.53 0.33
Invicta  1686   938 556 176 0.55 0.33
Istabraq  1759   977 578 194 0.55 0.32
Maris Widgeon  1589   670 743 165 0.42 0.46
Mascot  1657   923 545 178 0.55 0.32
Quartz  1507   861 459 169 0.57 0.30
Riband  1614   956 494 160 0.59 0.30
Sterling  1434   820 446 157 0.57 0.31
Xi 19  1618   907 520 185 0.55 0.32
Zebedee 1635   946 508 172 0.57 0.31
Mean 1623   909 528 178 0.56 0.32
P 
SED 
df                        

0.23 
121.8 

56 

  <0.001
  68.3

  56

<0.001
44.08

56

0.002 
12.42 

56 

<0.001
0.0078

56

<0.001
0.0070

56
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4.2. Straw glucose yield and straw digestibility  

Straw glucose yield differed significantly between cultivars with Quartz recording the highest 

glucose yield and Maris Widgeon the least in both years (P<0.001; Table 4). Straw digestibility is 

expressed as the percentage of total available glucose in the residue released during enzyme 

hydrolysis. Moreover, straw digestibility also differed significantly between cultivars in 2010 and 

2011 (P<0.001; Table 5) with Quartz recording the highest straw digestibility in 2010 (60.32%) and 

Cordiale the highest in 2011 (67.46%) and with Maris Widgeon recording the lowest digestibility in 

both years (Table 5). PGR application had no significant effect on straw glucose yield and straw 

digestibility and there were no significant interactions between cultivar and PGR in 2011. 

 

Table 4: Glucose yield of 6 winter wheat cultivars in 2010 and 7 winter wheat cultivars in 2011. 
 
Cultivars 
 

Glucose Yield  
(mg gm-1)  

(2010) 

Glucose Yield  
(mg gm-1) 

(2011)
Cordiale 344 390
Hereward 
Istabraq 

324 
- 

375
369

Maris Widgeon 244 315
Quartz 374 404
Riband 336 380
Zebedee 339 380
Mean 327 373
P 
SED 
df 

<0.001 
9.71 

15 

<0.001
10.72

24
 
 
 
 
Table 5: Straw digestibility of 6 winter wheat cultivars in 2010 and 7 winter wheat cultivars in 2011. 
 
Cultivars 
 

Straw Digestibility  
(%) (2010) 

Straw Digestibility  
(%) (2011)

Cordiale 54.02 67.46
Hereward 
Istabraq 

50.63 
- 

65.98
62.74

Maris Widgeon 38.65 54.13
Quartz 60.32 67.15
Riband 53.08 63.95
Zebedee 53.99 65.95
Mean 51.78 63.91
P 
SED 
df 

<0.001 
1.767 

15 

<0.001
2.516

24
 



19 

4.3. Lodging assessments 

The lodging model (Berry et al., 2000) uses crop measurements to predict the wind speed at which 

lodging will occur. Cultivars differed significantly for stem failure wind speed for internode 1 and 2 

in 2010 (P<0.001; Figure 1 (a)) with cultivars ranking similarly for internode 2 in 2011 (Figure 1 

(b)). Stem failure wind speed values were lower overall with significant differences for internode 1 

in 2011 (P<0.001; Figure 1 (b)).  

 

The cultivars most prone to stem lodging were Zebedee, followed by Battalion and Maris Widgeon 

in 2010 (Figure 1 (a)). The most resistant was Quartz in 2010 (Figure 1 (a)) and Grafton in 2010 

and 2011 (Figure 1 (a) and (b)). There was a trend for PGR to increase stem failure wind speed for 

both internodes, but the differences were not significant and there were no significant interactions 

between cultivar and PGR for either internode in 2011 (Figure 1 (c) and (d)).  

 

The component of stem failure wind speed most likely to be related to digestibility of the stem is the 

stem material strength (Figure 2). Differences between cultivars in stem material strength were not 

significant for internode 1 and 2 in 2010 (Figure 2 (a)). Cultivars ranked similarly in terms of stem 

material strength for internode 2 (Figure 2 (b)) but significantly differed for internode 1 in 2011 

(P=0.002; Figure 2 (b)). PGR had an increasing and decreasing effect and had no significant effect 

on stem material strength for both internodes and there were no significant interactions between 

cultivar and PGR for either internode (Figure 2 (c) and (d)). 
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Figure 1: (a) Internode 1 stem failure wind speed (SED=1.214, df=39) and internode 2 stem failure 
wind speed (SED=1.402, df=39) of 14 winter wheat cultivars in 2010. (b) Effect of cultivar on 
internode 1 stem failure wind speed (SED=0.752, df=56) and internode 2 stem failure wind speed 
(SED=0.93, df=56) of 15 winter wheat cultivars in 2011. (c) Effect of cultivar and PGR on internode 
1 stem failure wind speed (SED=1.056, df=57.46) of 15 winter wheat cultivars in 2011. (d) Effect of 
cultivar and PGR on internode 2 stem failure wind speed (SED=1.346, df=49.77) of 15 winter 
wheat cultivars in 2011. 
 
 
 
 
 
 
 
 
 

(c) 

(d) 
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Figure 2: (a) Internode 1 stem material strength (SED=7.83, df=39) and internode 2 stem material 
strength (SED=4.27, df=39) of 14 winter wheat cultivars in 2010. (b) Effect of cultivar on internode 
1 stem material strength (SED=4.33, df=56) and internode 2 stem material strength (SED=3.11, 
df=56) of 15 winter wheat cultivars in 2011. (c) Effect of cultivar and PGR on internode 1 stem 
material strength (SED=5.99, df=57.87) of 15 winter wheat cultivars in 2011. (d) Effect of cultivar 
and PGR on internode 2 stem material strength (SED=4.56, df=44.97) of 15 winter wheat cultivars 
in 2011.  
 
 
 
 

 

 

 

(c) 

(d) 
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4.4. Relationship between straw digestibility and lodging resistance 

When straw digestibility was regressed against stem material strength, there was no significant 

relationship for either internode in 2010 or 2011 analysed alone. PGR application had no 

significant effect on the relationship in 2011. Stem material strength is not the only determinant of 

lodging susceptibility as the leverage force on the stem also needs to be considered.    

 

A key component of leverage force is cultivar height. When cultivar height was regressed against 

straw digestibility, a significant negative relationship was detected in both years (P<0.001, 

R2=0.7049; Figure 3 (a)) and (P<0.001, R2=0.373; Figure 3 (b)). PGR application had no significant 

effect on the relationship in 2011 (Figure 3 (b)).  

 

Stem strength and leverage force are used to calculate stem failure wind speed (the wind speed at 

which the stem is predicted to fail). When straw digestibility was regressed against stem failure 

wind speed, there was no significant relationship for either internode in 2010 or 2011 analysed 

alone. PGR application had no significant effect on the relationship in 2011.  

 

When glucose yield was regressed against stem failure wind speed, a significant weak linear 

relationship was detected for internode 1 (P=0.022, R2=0.216; Figure 4 (a)) in 2010 but there were 

no relationship for internode 2 in 2010 and for either internode in 2011. PGR application had no 

significant effect on the relationship in 2011.  
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Figure 3: (a) Relationship between cultivar height and % straw digestibility of 6 winter wheat 
cultivars in 2010. (b) Relationship between cultivar height and % straw digestibility of 7 winter 
wheat cultivars in 2011. 
 
 
 
 
 
 
 
 
 
 

(a) 

Year 2010  

Year 2011 (-PGR) 

Year 2011 (+PGR) 
y = -0.3665x + 90.26 

       R2 = 0.373  

(b) 
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Figure 4: (a) Relationship between glucose yield and internode 1 stem failure wind speed of 6 
winter wheat cultivars in 2010. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Year 2010  



27 

5. Discussion 

The 15 cultivars selected produced similar amounts of biomass per unit area but contrasted for 

partitioning of that biomass to grain, straw and chaff and therefore had significantly different grain 

and straw yields. This is not surprising as several reviews of yield progress in wheat have shown 

that recent improvements in yield have come mainly from increases in harvest index rather than 

total biomass production (e.g. Shearman et al., 2005). Maris Widgeon, the only non-semi-dwarf 

cultivar in the experiment, produced similar amounts of biomass as the other cultivars but, as 

expected, had a smaller harvest index and hence less grain yield and greater straw yield than the 

other cultivars.  

 

Pre-treatment was selected to achieve 50% subsequent saccharification of glucose from a 

standard wheat cultivar. This was to identify variations in digestibility between cultivars. Glucose 

yield from pre-treated straw residue after enzyme hydrolysis varied between cultivars in both years. 

This is a similar finding to Knapp et al. (1983) who reported significant differences between 

cultivars of winter wheat in the amount of reducing sugars released by enzyme saccharification 

with Trichoderma reesei. In contrast, Larsen et al. (2012) found no significant cultivar differences 

with enzyme saccharification either in terms of glucose, xylose nor total sugar released from straw. 

With similar level of glucose content from straw residue, Quartz had the highest glucose yield and 

Maris Widgeon the least from pre-treated straw residue after enzyme hydrolysis in both years. 

Lindedam et al. (2012) reported a similar range of C6 sugar (glucose) release ranging from 0.21-

0.22 g g-1 of straw from twenty wheat cultivars. Saha et al. (2005) reported a maximum value of 

550 mg g-1.  

 

Straw digestibility is expressed as the percentage glucose released by enzymes. Straw digestibility 

varied between cultivars in both years and PGR application had no effect on straw digestibility in 

2011. Average straw digestibility was higher in 2011 (63.91%) than 2010 (51.78%). Jensen et al. 

(2011) identified differences between winter wheat cultivars with respect to degradability of straws 

from 106 winter wheat cultivars which exhibited differences in degradability ranging from 258 g kg-1 

to 407 g kg-1 of dry matter by using in vitro enzymatic solubility (EFOS) assay which was been 
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developed to assess feed value. EFOS assay correlates with other assays such as the recently 

developed high-throughput pre-treatment and enzymatic saccharification developed by Selig at al. 

(2010). White et al. (1981) previously also found significant differences in degradability in a set of 

25 winter wheat cultivars.  

 

Quartz consistently had higher glucose yield with the highest straw digestibility with 60.32% 

followed by Cordiale (54.02%) in 2010. But surprisingly, Cordiale had the highest straw digestibility 

with 67.46% followed by Quartz (67.15%) in 2011. But moreover, Cordiale also had the highest 

glucose yield after Quartz in both years. However, Habib et al. (1995) also found a highly 

significant difference in digestibility by using in vitro dry matter digestibility (IVDMD) by 48 h in vitro 

fermentation technique developed by Tilley and Terry (1963) ranging from 36.40% to 48.36% in 15 

wheat cultivars. Interestingly, Maris Widgeon the only non-semi-dwarf with high straw yield had the 

least straw digestibility (38.65% and 54.13% in 2010 and 2011, respectively) in both years as well 

had the least glucose yield in both years. This was in agreement with Capper (1988) who 

suggested that taller cultivars would have more stem than shorter cultivars and this would 

theoretically result in lower digestibility. Tolera et al. (2008) also reported that there were 

differences in digestibility caused by cultural practice. Cordiale and Quartz both a semi-dwarf with 

the greatest grain yield along with greatest straw yield had the highest straw digestibility in both 

years. Keman et al. (1984) and Tolera et al. (2008) reported that the digestibility of different parts 

or components of the plant varies and part of the reason for the difference in digestibility of the 

different cultivars may be due to different ratios of the parts of the plants (leaves vs. stem). Travis 

et al. (1996) who also reported that increased straw stiffness may be associated with modified 

anatomical features of the stems and changed chemical characteristics of the cell walls, which may 

be expected to decrease degradability of the straw. 

 

There was no evidence that straw digestibility was related to lodging susceptibility.  When data 

from 2010 or 2011 were analysed separately, no relationship was found between straw digestibility 

and stem material strength. However, suggests that cultivars with the highest straw digestibility are 

not necessarily with more stem material strength and may less likely to get lodged. Baker et al. 
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(1998) reported that stem lodging risk increases significantly if the stem material strength falls 

below 20 MPa. Travis et al. (1996) found that wheat and barley varieties that were more resistant 

to lodging had higher in vitro degradability of the basal internode than susceptible varieties. 

 

Stem material strength is only one component of overall stem strength which is also dependent on 

factors such as internode length. Stem failure wind speed is the force of wind required to cause the 

internode to lodge and is hence a better indicator of lodging risk than stem material strength. There 

was no evidence that straw digestibility was related to stem failure wind speed, i.e. lodging 

susceptibility, for either internode in 2010 or 2011 when analysed alone. Berry et al. (2000) 

reported that stem lodging risk increases significantly if the stem failure wind speed falls below 20–

25 m s-1 and the wheat must withstand wind gusts of up to 40 m s-1.  

 

Although, straw digestibility had no relationship between stem failure wind speed but the actual 

glucose recovered and available for bioethanol production was positively related to stem failure 

wind speed for internode 1 in 2010. Moreover, PGR had no significant effect on the relationship in 

2011.  

 

A key component of leverage force is cultivar height. When regressed against straw digestibility, a 

negative relationship was detected in both years. This agrees with Jensen et al. (2011) who 

reported that degradability of straw decreased with height as more degradable leaves constitute a 

larger part of the straw in shorter cultivars. Thus, this indicates that taller wheat cultivars are less 

digestible. Lindedam et al. (2012) suggested that cultivar-specific relationships of leaf and stem 

sugar yield is more important in predicting the overall sugar yield than the leaf-to-stem ratio. Taller 

plants had a preferred structure for pre-treatment and enzymatic hydrolysis, which impact 

conversion to sugar positively compared to shorter plants. 

 

These results are promising as they indicate that it should be possible to identify wheat cultivars 

that are suitable for dual purpose use (grain for food, straw for bioethanol) and that these are not 

likely to be more susceptible to lodging. There was some variation in straw digestibility between 
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cultivars but there was no evidence that higher digestibility leads to weaker stem and subsequently 

increases lodging risk. PGRs reduced plant height and therefore lodging risk without reducing 

straw yield so had no impact on potential bioethanol yield. 
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